250 research outputs found

    Capillaroscopy in 2016 : new perspectives in systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disorder of unknown etiology characterized by early impairment of the microvascular system. Nailfold microangiopathy and decreased peripheral blood perfusion are typical clinical aspects of SSc. The best method to evaluate vascular injury is nailfold videocapillaroscopy, which detects peripheral capillary morphology, and classifies and scores the abnormalities into different patterns of microangiopathy. Microangiopathy appears to be the best evaluable predictor of the disease development and has been observed to precede the other symptoms by many years. Peripheral blood perfusion is also impaired in SSc, and there are different methods to assess it: laser Doppler and laser speckle techniques, thermography and other emerging techniques

    Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis

    Full text link
    This study aimed at determining the cost-effectiveness of amyloid-positron emission tomography (PET) compared to Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (amyloid-?42, total-Tau and phosphorylated-Tau) for the diagnosis of AD in patients with early-onset cognitive impairment. A decision tree model using a national health care perspective was developed to compare the costs and effectiveness associated with Amyloid-PET and AD CSF biomarkers. Available evidence from the literature and primary data from Hospital Clínic de Barcelona were used to inform the model and calculate the efficiency of these diagnostic alternatives. Medical visits and diagnostic procedures were considered and reported in €2020. We calculated the incremental cost-effectiveness ratio to measure the cost per % of correct diagnoses detected and we perform one-way deterministic and probabilistic sensitivity analyses to assess the uncertainty of these results. Compared with AD CSF biomarkers, Amyloid-PET resulted in 7.40% more correctly diagnosed cases of AD, with an incremental total mean cost of €146,854.80 per 100 cases. We found a 50% of probability that Amyloid-PET was cost-effective for a willingness to pay (WTP) of €19,840.39 per correct case detected. Using a WTP of €75,000, the probability that it is cost-effective reached a maximum of 76.9%, thus leading to a conclusion that Amyloid-PET is not a cost-effective technique compared to AD CSF biomarkers, unless the funder is willing to pay a minimum of €19,840.39 to detect one more correct case. Furthermore, obtaining CSF provides simultaneous information on amyloid ? and tau biomarkers and allows other biomarkers to be analyzed at a relatively low cost.© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany

    Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model

    Get PDF
    Retinitis pigmentosa (RP) is a group of progressive retinal degenerations of mostly monogenic inheritance, which cause blindness in about 1:3,500 individuals worldwide. Heterozygous variants in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP). Among these, missense variants at C-terminal proline 347, such as p.Pro347Ser, cause severe adRP recurrently in European affected individuals. Here, for the first time, we use CRISPR/Cas9 to selectively target the p.Pro347Ser variant while preserving the wild-type RHO allele in vitro and in a mouse model of adRP. Detailed in vitro, genomic, and biochemical characterization of the rhodopsin C-terminal editing demonstrates a safe downregulation of p.Pro347Ser expression leading to partial recovery of photoreceptor function in a transgenic mouse model treated with adeno-associated viral vectors. This study supports the safety and efficacy of CRISPR/Cas9-mediated allele-specific editing and paves the way for a permanent and precise correction of heterozygous variants in dominantly inherited retinal diseases

    Cortical thickness modeling and variability in Alzheimer's disease and frontotemporal dementia

    Full text link
    Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.© 2023. The Author(s)

    Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data

    Full text link
    Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC

    Functional imaging of the developing brain with wearable high-density diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner environment

    Get PDF
    Studies of cortical function in the awake infant are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become increasingly common in developmental neuroscience, but has significant limitations including resolution, spatial specificity and ergonomics. In adults, high-density arrays of near-infrared sources and detectors have recently been shown to yield dramatic improvements in spatial resolution and specificity when compared to typical fNIRS approaches. However, most existing fNIRS devices only permit the acquisition of ∼20-100 sparsely distributed fNIRS channels, and increasing the number of optodes presents significant mechanical challenges, particularly for infant applications. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first study of the infant brain using wearable HD-DOT. Using a well-established social stimulus paradigm, and combining this new imaging technology with advances in cap design and spatial registration, we show that it is now possible to obtain high-quality, functional images of the infant brain with minimal constraints on either the environment or on the infant participants. Our results are consistent with prior low-density fNIRS measures based on similar paradigms, but demonstrate superior spatial localization, improved depth specificity, higher SNR and a dramatic improvement in the consistency of the responses across participants. Our data retention rates also demonstrate that this new generation of wearable technology is well tolerated by the infant population
    corecore